Redbridge Air Quality Annual Status Report for 2016 Date of publication: April 2017

This report provides a detailed overview of air quality in London Borough of Redbridge during 2016. It has been produced to meet the requirements of the London Local Air Quality Management statutory process¹.

Contact details

Luke Drysdale (Air Quality Lead Officer) Lynton House (10th Floor Front) 255-259 High Road, Ilford IG1 1NY Tel: 0208 708-5611 Email: luke.drysdale@redbridge.gov.uk

¹ LLAQM Policy and Technical Guidance 2016 (LLAQM.TG(16)). https://www.london.gov.uk/what-we-do/environment/pollution-and-air-quality/working-boroughs

CONTENTS

Abbrevia	ations	2
1. Air	Quality Monitoring	5
1.1	Locations	5
1.2	Comparison of Monitoring Results with AQOs	7
2. Acti	ion to Improve Air Quality	. 16
2.1	Air Quality Action Plan Progress	. 19
3. Plar	nning Update and Other New Sources of Emissions	. 29
3.1	New or significantly changed industrial or other sources	. 30
Appendi	x A Details of Monitoring Site QA/QC	. 30
A.1	Automatic Monitoring Sites	.31
A.2	Diffusion Tube Quality Assurance / Quality Control	. 32
A.3	Adjustments to the Ratified Monitoring Data	.36
Appendi	x B Full Monthly Diffusion Tube Results for 2016 and Distance Adjustment	. 37

Tables

Table A.	Summary of National Air Quality Standards and Objectives4
Table B.	Details of Automatic Monitoring Sites for 20165
Table C.	Details of Non-Automatic Monitoring Sites for 20165
Table D.	Annual Mean NO_2 Ratified and Bias-adjusted Monitoring Results (µg $m^{\mbox{-}3})$
Table D2.	Results of Non-Automatic Nitrogen Dioxide Diffusion Tubes (2010 to 2016) ($\mu g~m^{\text{-3}})$ 9
Table E.	NO_2 Automatic Monitor Results: Comparison with 1-hour Mean Objective13
Table G.	PM_{10} Automatic Monitor Results: Comparison with 24-Hour Mean Objective14
Table H.	Annual Mean $\text{PM}_{2.5}$ Automatic Monitoring Results (µg m $^{\text{-3}})$ 12
Table J.	Commitment to Cleaner Air Borough Criteria16
Table K.	Delivery of Air Quality Action Plan Measures19
Table L.	Planning application requirements met 201619
Table M.	Short-Term to Long-Term Monitoring Data Adjustment
Table N.	NO ₂ Diffusion Tube Results
Table O.	NO ₂ Distance Corrected Tube Results40

Abbreviations

AQAP	Air Quality Action Plan
AQMA	Air Quality Management Area
AQO	Air Quality Objective
BEB	Buildings Emission Benchmark
CAB	Cleaner Air Borough
CAZ	Central Activity Zone
EV	Electric Vehicle
GLA	Greater London Authority
LAEI	London Atmospheric Emissions Inventory
LAQM	Local Air Quality Management
LLAQM	London Local Air Quality Management
NRMM	Non-Road Mobile Machinery
PM ₁₀	Particulate matter less than 10 micron in diameter
PM _{2.5}	Particulate matter less than 2.5 micron in diameter
TEB	Transport Emissions Benchmark
TfL	Transport for London

Pollutant	Objective (UK)	Averaging Period	Date ¹
Nitrogen dioxide - NO ₂	200 μ g m ⁻³ not to be exceeded more than 18 times a year	1-hour mean	31 Dec 2005
	40 μg m ⁻³	Annual mean	31 Dec 2005
Particles - PM ₁₀	50 μ g m ⁻³ not to be exceeded more than 35 times a year	24-hour mean	31 Dec 2004
	40 μg m ⁻³	Annual mean	31 Dec 2004
Particles - PM _{2.5}	25 μg m ⁻³	Annual mean	2020
	Target of 15% reduction in concentration at urban background locations	3 year mean	Between 2010 and 2020
Sulphur Dioxide (SO ₂)	266 μg m ⁻³ not to be exceeded more than 35 times a year	15 minute mean	31 Dec 2005
	350 μg m ⁻³ not to be exceeded more than 24 times a year	1 hour mean	31 Dec 2004
	125 μ g m ⁻³ mot to be exceeded more than 3 times a year	24 hour mean	31 Dec 2004

Table A. Summary of National Air Quality Standards and Objectives

Note: ¹by which to be achieved by and maintained thereafter

1. Air Quality Monitoring

1.1 Locations

Table B. Details of Automatic Monitoring Sites for 2016

Site ID	Site Name	X (m)	Y (m)	Site Type	In AQMA?	Distance from monitoring site to relevant exposure (m)	Distance to kerb of nearest road (N/A if not applicable) (m)	Inlet height (m)	Pollutants monitored	Monitoring technique
CM7	Redbridge 7 Ley Street	544454.8	187681.9	Urban background	Y	70	50m	2.7	NO ₂ ,PM _{10,} PM _{2.5} , O ₃	Chemiluminescent; BAM
CM4	Redbridge 4 Gardner Close	540828.3	188367.9	Urban traffic	Y	12	12m	2.	NO ₂ ,PM ₁₀ , PM _{2.5} ,	Chemiluminescent; BAM

Table C. Details of Non-Automatic Monitoring Sites for 2016

Site ID	Site Name	X (m)	Y (m)	Site Type	In AQM A?	Distance from monitoring site to relevant exposure (m)	Distance to kerb of nearest road (N/A if not applicable) (m)	Site height (m)	Pollutants monitored	Tube co- located with an automatic monitor? (Y/N)
DTA	Mayfield School	547022.3	187232.3	Urban Background	Ŷ	<5m	>100	1.5	NO ₂	Ν
DT B	llford Lane	543688.0	186139.6	Roadside	Ŷ	<5m	2.3	3.1	NO ₂	Ν

DT C	Ilford Lane BP	544132.4	184945.6	Roadside	Y	<5m	3.0	2.7	NO ₂	Ν
DT D	Ley Street	544454.8	187681.9	Urban Background	Ŷ	>5m	50m	2.7	NO ₂	Y
DT E	Gardner Close	540828.3	188367.9	Roadside	Y	<5m	4.2	2.6	NO ₂	Y
DT F	Fullwell Cross	544560.7	190400.8	Roadside	Y	<5m	1.2	1.7	NO ₂	Ν
DT G	Perth Road	543421.7	188322.6	Roadside	Y	<5m	1.5	2.8	NO ₂	Ν
DT H	Westbound Eastern Ave	543450.6	188371.1	Roadside	Y	<5m	1.3	2.4	NO ₂	Ν
DT I	CentralRes Eastern Ave	543453.7	188384.4	Roadside	Ŷ	<5m	2.0	2.5	NO ₂	N
DTJ	Eastbound Eastern Ave	543442.0	1888400. 2	Kerbside	Ŷ	<5m	0.9	2.7	NO ₂	N
DT K	Parham Dr	543498.3	188427.6	Near Road	Ŷ	<5m	40m from Eastern Ave	2.6	NO ₂	N
DT L	North Circ. Rd, Northbound Royston Gd	541816.3	188161.3	Roadside	Ŷ	<5m	2.1	2.8	NO ₂	N
DT M	North Circ. Rd, Southbound Wanstead Pk	541887.8	188136.2	Roadside	Ŷ	<5m	3.0	3.0	NO ₂	N
DT N	Ethel Davis School	546675.6	188886.1	Near Road	Ŷ	<5m	15	2.8	NO ₂	N
DT O	Grove Road	540025.7	190494.3	Roadside	Ŷ	<5m	8.0 horizontal	2.7	NO ₂	Ν
DT P	High Road Woodford	540076.0	190682.6	Roadside	Ŷ	<5m	2.7	2.6	NO ₂	N
DT Q	M11	541992.1	191799.9	Near Road	Y	>10m	35	2.4	NO ₂	N
DT R	Winston Way Primary Sch.	544364.1	186597.4	Roadside	Ŷ	<5m	3.2	2.8	NO ₂	N
DT S	Winston Way Gyratory	544360.4	186615.3	Kerbside	Ŷ	>10m	0.9	2.6	NO ₂	N
DTT	Chadwell Heath Primary School	547158.3	187699.4	Kerbside	Ŷ	<5m	0.6	2.8	NO ₂	N

DT U	Goodmayes	546665.3	187046.3	Roadside	Y	<5m	9.0	2.6	NO ₂	Ν
	Primary School									
DT V	Isaac Newton	545030.2	186919.8	Near Road	Y	<5m	15	2.6	NO ₂	Ν
	Academy									
DT W	Inside Winston	544332.3	186571.3	Near Road	Y	<5m	17	3.0	NO ₂	Ν
	Way Prim.Sch									

1.2 Comparison of Monitoring Results with AQOs

The results presented are after adjustments for "annualisation" and for distance to a location of relevant public exposure, the details of which are described in Appendix A.

Table D. Annual Mean NO₂ Ratified and Bias-adjusted Monitoring Results ($\mu g m^{-3}$) (Non-automatic co-located tube date included for data trend comparisons) (DT D Perth Terrace was relocated to DT D Ley Street in 2014 with CM7)

		Valid data	Valid data			Annual Me	ean Concentra	ation (µgm ⁻³)		
Site ID	Site type	capture for monitoring period % ^a	capture 2016 % ^b	2010 °	2011 ^c	2012 °	2013 [°]	2014 °	2015 °	2016 °
	Automatic									
CM1	Background			33.0	33.3	36.8	35.4	32.8		
	(Perth Terrace)									
CM7	Automatic Background	97	97					34.6	33.1	33
CIVIT	(Ley Street)	37	37							
СМ3	Urban Traffic			51.1	52.0					
CM4	Urban Traffic	84	84	47.9	49.2	48.3	45.0	48.3	41.0	42.3
	(Gardner Close)									
CM5	Urban Traffic			55.0	54.2					

		Valid data	Valid data	Annual Mean Concentration (μgm ⁻³)							
Site ID	Site type	capture for monitoring period % ^a	capture 2016 % ^b	2010 °	2011 [°]	2012 ^c	2013 ^c	2014 [°]	2015 ^c	2016 [°]	
DT D	Non-Automatic Background (Ley Street)	100	100						29.6	30.4	
DT D	Non-Automatic Background (Perth Terrace)			34.2	33.1	37.2	33.7	31.7			
DT E	Non-Automatic Background (Gardner Close)	100	100	47.3	45.6	48.6	46.8	48.6	42.9	42.3	

Notes: Exceedance of the NO₂ annual mean AQO of 40 μ gm⁻³ are shown in **bold**. NO₂ annual means in excess of 60 μ g m⁻³, indicating a potential exceedance of the NO² hourly mean AQS objective are shown in bold and underlined.

^a data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

^b data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c Means should be "annualised" in accordance with LLAQM Technical Guidance, if valid data capture is less than 75%

		Year	2010	2011	2012	2013	2014	2015	2016		
I	Bias adjustmer	t factor	0.79	0.87	0.86	0.80	0.76	0.95	1.03		
Site ID	Site Type	Within AQMA?		Annual Mean Concentration (μg/m ³) - Adjusted for bias ^a							
DT A	Background	Y	26.3	26.2	28.7	24.1	24.2	25.8	28.8		
DT B	Roadside	Y	<u>62.4</u>	58.5	<u>60.8</u>	52.5	51.7	52.0	55.9		
DT C	Roadside	Y	57.9	54.3	57.8	47.5	49.2	53.1	57.0		
DT D	Background	Y	34.2	31.9	37.2	33.7	31.7	29.6	29.0		
DT E	Roadside	Y	47.3	45.9	48.6	46.8	48.6	42.9	43.4		
DT F	Roadside	Y	52.4	49.0	52.5	44.0	42.3	44.7	46.0		
DT G	Roadside	Y	46.1	40.6	45.4	43.9	39.2	46.9	59.1		
DT H	Roadside	Y	54.4	58.1	<u>65.0</u>	58.1	<u>64.6</u>	53.1	50.3		
DT I	Roadside	Y	<u>73.7</u>	<u>92.0</u>	<u>82.3</u>	56.7	<u>64.3</u>	51.8	54.4		
DT J	Kerbside	Y	55.2	46.0	50.5	45.1	45.6	48.0	55.3		
DT K	Near Road	Y	40.0	38.0	38.3	43.1	36.8	44.8	52.9		
DT L	Roadside	Y	54.5	42.6	48.4	46.2	42.4	45.7	47.6		
DT M	Roadside	Y	<u>75.0</u>	<u>68.3</u>	<u>77.3</u>	<u>66.7</u>	<u>71.6</u>	73.0	80.5		

Table D2: Results of Non-Automatic Nitrogen Dioxide Diffusion Tubes (2010 to 2016)

DT N	Near Road	Y	31.4	28.5	31.9	32.9	25.8	25.8	28.1	
DT O	Roadside	Y	51.5	54.7	58.2	45.2	52	45.7	49.5	
DT P	Roadside	Y	40.8	42.5	45.6	40.7	39.8	38.0	38.8	
DT Q	Near Road	Y	44.0	47.5	49.5	41.4	42.6	46.8	42.1	
DT R	Roadside	Y				53.6	50.3	50.2	57.3	
DT S	Kerbside	Y				53.2	49.4	52.6	58.3	
DTT	Kerbside	Y				47.2	41.4	42.0	47.8	
DT U	Roadside	Y				35.6	34.3	34.8	37.6	
DT V	Near Road	Y				34.7	36	31.4	34.0	
DT W	Near Road	Y					36.4	34.8	38.1	

Trends in Annual Mean NO₂ Concentrations

The data above shows the annual mean NO₂ concentrations 7 year trend from 2010 to 2016. The results indicate that the annual mean objective was exceeded for all years monitored at the CM3 (Fullwell Cross) and CM5 (Grove Road) roadside monitoring sites until their closure in 2012. The annual mean objective was also exceeded for all 7 years monitored at the roadside site CM4 (Gardner Close) however the results at CM4 show a unsteady downward trend over that period. The background site CM1 at Perth Terrace has shown steady concentrations until its closure in 2014. Similarly the background site CM7 at Ley Street has shown steady concentrations since opening in 2014. Both background sites CM1 and CM7 have continually met the annual mean objective concentration. 7 years of non-automatic data at monitoring site DT E (Gardner Close) has been included for data trend comparisons. Similarly data from background sites DT D (Perth Terrace) and DT D (Ley Street) have been included for trend comparison purposes. Site DT D (Perth Terrace) was relocated to DT D Ley Street in 2014 therefore the 7 years of data is split between the two sites. Site DT E in comparison to CM4 shows a similar unsteady concentration decrease and increase trend in the data over the 7 year period. The comparison of site DT D to sites CM1 and CM7 show that background concentration trends have remained relatively steady over the 7 year period.

Table D2 shows a significant number of non-automatic diffusion tube sites still showing pollution levels above the level of 40 μ gm⁻³, as prescribed in the Air Quality Objectives. There is a small downward trend across Redbridge's diffusion tube sites, however roadside sites are persistently above levels set in the Air Quality Objectives.

	Valid data	Valid data	Number of Hourly Means > 200 μ gm ⁻³							
Site ID	capture for monitoring period % ^a	capture 2016 % ^b	2010 °	2011 ^c	2012 ^c	2013 ^c	2014 °	2015 °	2016 ^c	
CM1			0	0	0	1	0			
CM7	97	97					0	0	0	
СМЗ										
CM4	84	84							3	
CM5										

Table E. NO₂ Automatic Monitor Results: Comparison with 1-hour Mean Objective

Notes: Exceedance of the NO₂ short term AQO of 200 μ gm⁻³ over the permitted 18 days per year are shown in **bold**.

^a data capture for the monitoring period, in cases where monitoring was only carried out for part of the year ^b data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c Means should be "annualised" in accordance with LLAQM Technical Guidance, if valid data capture is less than 75%

Annual Mean PM₁₀ Automatic Monitoring Results (µg m⁻³) Table F.

	Valid data	Valid data capture 2016 % ^b	Annual Mean Concentration (µgm ⁻³)							
Site ID	capture for monitoring period % ^a		2010 °	2011 ^c	2012 ^c	2013°	2014 ^c	2015 °	2016 °	
CM1(Background)			14.7	16.3	14.9	17.7	16.9			
CM7(Background)	85	85					22.9	18.8	16.9	
CM3(Roadside)			30.9	28.9						

	Valid data	Valid data	Annual Mean Concentration (µgm ⁻³)							
Site ID	capture for monitoring period % ^a	capture 2016 % ^b	2010 [°]	2011 ^c	2012 °	2013 ^c	2014 ^c	2015 °	2016 °	
CM4(Roadside)	96	96	31.1	25.9	27.0	30.3	25.4	17.0	18.8	
CM5(Roadside)			23.1	27.6						

Notes: Exceedance of the PM_{10} annual mean AQO of 40 μ gm⁻³ are shown in **bold**.

^a data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

^b data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c Means should be "annualised" in accordance with LLAQM Technical Guidance, if valid data capture is less than 75%

Table G. PM₁₀ Automatic Monitor Results: Comparison with 24-Hour Mean Objective

	Valid data	Valid data capture 2016 % ^b		Number of Daily Means > 50 μgm ⁻³							
Site ID	capture for monitoring period % ^a		2010 [°]	2011 ^c	2012 °	2013 ^c	2014 °	2015 °	2016 °		
CM1(Background)			0	5	2(35)	2	5(35)				
CM7(Background)	87	87					7(36)	3(30)	3(28)		
CM3(Roadside)			17	29	6(52)						
CM4(Roadside)	97	97	18	11	18	23	9(43)	1	6		

Notes: Exceedance of the PM_{10} short term AQO of 50 μ g m⁻³ over the permitted 35 days per year or where the 90.4th percentile exceeds 50 μ g m⁻³ are shown in **bold**.

Where the period of valid data is less than 90% of a full year, the 90.4th percentile is shown in brackets after the number of exceedances.

^a data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

^b data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c Means should be "annualised" in accordance with LLAQM Technical Guidance, if valid data capture is less than 75%

Table H. Annual Mean $PM_{2.5}$ Automatic Monitoring Results ($\mu g m^{-3}$) (PM2.5 Monitor installed at CM7 April 2016. As a full year of data will be not be available until May 2017, this will be reported on for ASR 2018.

	Valid data	Valid data capture 2016 % ^b	Annual Mean Concentration (µgm ⁻³)							
Site ID	capture for monitoring period % ^a		2010 [°]	2011 ^c	2012 °	2013 ^c	2014 ^c	2015 °	2016 ^c	
CM7(Background)										

Notes: Exceedance of the $PM_{2.5}$ annual mean AQO of 25 μ gm⁻³ are shown in **bold**.

^a data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

^b data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c Means should be "annualised" in accordance with LLAQM Technical Guidance, if valid data capture is less than 75%

2. Action to Improve Air Quality

Table J. Commitment to Cleaner Air Borough Criteria

Theme	Crit	eria	Achieved (Y/N)	Evidence
1. Political leadership	1.a	Pledged to become a Cleaner Air for London Borough (at cabinet level) by taking significant action to improve local air quality and signing up to specific delivery targets.	Ŷ	Agreed by cabinet and signed by the council leader in 2013.
	1.b	Provided an up-to-date Air Quality Action Plan (AQAP), fully incorporated into LIP funding and core strategies.	Y	The AQAP is now complete and is currently undergoing internal scrutiny within the council. The AQAP will subsequently go out for public consultation and then be approved by cabinet. The draft and final AQAP will be available online at: http://www2.redbridge.gov.uk/cms/planning_and_the_environment/the_environment-2/the_environment/environmental_health/pollution_control/air_quality.aspx
				The AQAP is Incorporated into LIP process/public health via core strategies such as the Redbridge Environmental Action Plan (REACT), the Local Plan and Development Framework, LIP Transport Strategy, and current JSNA with view for incorporation into the revised Health & Wellbeing Strategy 2017-20, which scheduled for revision in late 2017.
2. Taking action	2.a	Taken decisive action to address air pollution, especially where human exposure and vulnerability (e.g. schools, older people, hospitals etc.) is highest.	Y	Redbridge MAQF schools/public health projects. Modal shifts to more sustainable transport forms and reduced car usage was achieved with round 1 of the MAQF schools projects. Consequently fewer children have been exposed to harmful pollution associated with repeated car use.
				Round 2 of the MAQF schools/public health project and the Low Emission Neighbourhood (LEN) project implementation aim to achieve more sustainable modal shift and reduced car usage which will reduce pollution and associated exposure. Strategic travel planning in the schools project will enable children parents to plan school journeys along less polluted routes.
				Promoting AirText in the borough care homes and social service drop in centres so that older residents can better manage their exposure.

	2.b	Developed plans for business engagement (including optimising deliveries and supply chain), retrofitting public buildings using the RE:FIT framework, integrating no engine idling awareness raising into the work of civil enforcement officers, (etc.).	Y	Lynton House has been retrofitted with a range of energy saving measures using the RE:FIT framework to reduce its carbon foot print. Engine idling awareness and enforcement will be addressed at cabinet level for implementation and has been incorporated into the air quality action plan (AQAP). The council is currently assessing the feasibility of local freight consolidation.
	2.c	Integrated transport and air quality, such as: improving traffic flows on borough roads to reduce stop/start conditions, improving the public realm for walking and cycling, and introducing traffic reduction measures.	Y	There are various ongoing LIP funded transport projects across the borough which implement actions that delver air quality benefits. Examples are junctions upgrades to radial and orbital corridors to improve traffic flow and public transport reliability. Addressing traffic light phasing issues with TFL. Additional improved cycle lanes and walking routes borough wide with improved journey connectivity, cycle parking and enhanced lighting to facilitate an increase in walking and cycling locally and increased use of public transport.
	2.d	Made additional resources available to improve local air quality, including by pooling its collective resources (s106 funding, LIPs, parking revenue, etc).	Y	Match funding for MAQF project: Round 1 £ 155,000 Round 2 £ 51,000
3. Leading by example	3.a	Invested sufficient resources to complement and drive action from others.	Y	One full time AQ officer. Resource investment in AQ officer's training through the MSc in Air Quality Management and Control at Birmingham University and membership of the Institute of Air Quality Management (IAQM). Officer has acquired the necessary AQ competencies to complement and drive the action of others. Examples are working with other departments in the council to influence proactive air quality measures such as introducing anti idling measures in the borough to discourage unnecessary vehicle engine idling. Driving sustainable behaviour change through past and current MAQF projects. Lobbied the Mayor of London to include the London Borough of Redbridge in a potentially proposed expanded ULEZ.
	3.b	Maintained an appropriate monitoring network so that air quality impacts within the borough can be properly understood	Y	Two permanent AQM sites and diffusion tubes in triplicate at various locations. Reference PM2.5 monitoring has been added to the background AQM site at Ley Street to better understand the impact of this species. Additional monitoring capability around schools has been implemented to assist in gaining a better understanding in AQ impacts in these locations.
	3.c	Reduced emissions from council operations, including from buildings, vehicles and all activities.	Y	NO2 and particulate emission reductions achieved by upgrading council fleet to Euro V and Euro IV specifications. All fleet is LEZ compliant and preparations are underway to ensure that all council fleet will be Euro IV compliant for ULEZ implementation regardless of the final agreed extension of the zone. Council carbon emission reduction programme in place promoting and implementing measures to reduce carbon emissions from energy use and transportation. Examples are the council's participation the de-centralised energy DEMAP programme, increased provision of sustainable transport options, infrastructure and training. Sustainable upgrades to council buildings to optimise energy usage and

				reduce emissions.
	3.d	Adopted a procurement code which reduces emissions from its own and its suppliers activities, including from buildings and vehicles operated by and on their behalf (e.g. rubbish trucks).	Y	Currently as a result of our adopted greener fleet procurement code, from a total of 50 refuse vehicles, 19 meet Euro VI standard, 14 meet Euro V and 17 meet Euro IV. 10 new Euro VI have been ordered and all Euro IV and V trucks will be replaced by Euro VI. This will result in significant emission reductions of NOx, primary NO ₂ and particulates. There are additional 100 fleet vehicles that will be operational in expanded ULEZ area. This section of fleet will be Euro VI compliant by 2019 which will result in further emission reductions.
4. Using the planning system	4.a	Fully implemented the Mayor's policies relating to air quality neutral, combined heat and power and biomass.	Y	All approved planning applications must meet the Mayor's requirements relating to AQ neutral, CHP and Biomass. Register is kept on applications that have been subject to AQ neutral and AQ assessment evaluation. Planning conditions are used to ensure that emissions from demolition, building work, on-site machinery, NRMM and transport activities are minimised. Limiting the number of parking spaces with new development, implementing more cycle parking facilities and electric vehicle charging points.
	4.b	Collected s106 from new developments to ensure air quality neutral development, <i>where possible</i> .	Ŷ	Planning applications for new developments are evaluated for the potential for s106 contributions. No contributions have been collected so far.
	4.c	Provided additional enforcement of construction and demolition guidance, with regular checks on medium and high risk building sites.	Y	We will investigate and enforce the requirements relating to dust control on sites subject to receiving nuisance complaints but would require additional staffing resources in matters relating to NRMM .Awaiting training from the GLA regarding NRMM enforcement.
5. Integrating air quality into the public health system	5	Included air quality in the borough's Health and Wellbeing Strategy and/or the Joint Strategic Needs Assessment.	Y	Air Quality has been included the Joint Strategic Needs Assessment. The last Health and Wellbeing Strategy expired in 2015. Inclusion the revised Health and Wellbeing Strategy including air quality as a key theme is currently being proposed. The final revised strategy will be determined late 2017.
6. Informing the public	6.a	Raised awareness about air quality locally.	Y	airTEXT promotion in schools, elderly care homes, social service drop in centres, in local communities and on the council website and Twitter feed. AQ community MAQF campaign. The promotion and publicity about our schools AQ Projects in the media and the ongoing schools AQ and Low Emission Neighbourhood (LEN) Projects have raised considerable awareness about local air quality. We are currently in the process of revising our air quality web page to make it more informative regarding all local air quality issues.

2.1 Air Quality Action Plan Progress

Table K provides a brief summary of Redbridge Council's progress against the Air Quality Action Plan, showing progress made this year. New projects which commenced in 2016 are shown at the bottom of the table (*where applicable*).

Table K. Delivery of Air Quality Action Plan Measures (From the new Redbridge Air Quality Action Plan 2017-2022)

Action category	Action ID	Action description	Responsibility	Cost	Expected emissions/ concentrations benefit	Progress	Monitoring	Further information
Emissions from developments	1	Ensuring emissions from construction and	Environmental Health and Planning	Low-Medium (in-house	Significant emissions	Ongoing	Update in Annual	
and buildings		operation of new developments are minimised by requiring developers to adhere to current and any superseding best practice guidance and supplementary planning guidance.		staff resource).	reduction in the AQMA		Status Report	
Emissions from developments	2	Educate, raise awareness and enforce Non Road	Environmental Health	Medium Apply for	emissions reductions in	Ongoing	Update in Annual	

and buildings		Mobile Machinery (NRMM) air quality policies.	and Planning	funding from MAQF	the AQMA		Status Report
Emissions from developments and buildings	3	Enforcing CHP and biomass air quality policies	Environmental Health and Planning	In-house	emissions reductions in the AQMA	Ongoing	Update in Annual Status Report
Emissions from developments and buildings	4	Enforcing Air Quality Neutral policies and require Air Quality Assessments where necessary	Environmental Health and Planning	In-house	emissions reductions in the AQMA	Ongoing	Update in Annual Status Report
Emissions from developments and buildings	5	Ensuring adequate, appropriate, and well located green space and infrastructure is included in new developments	Environmental Health and Planning	In-house	Green infrastructure can play a contributory role in reducing exposure to particulate pollution	Ongoing	Update in Annual Status Report
Emissions from developments	6	Ensuring that Smoke Control Zones are	Environmental Health	In-house	emissions reductions in	Ongoing	Is fully promoted on

and buildings		appropriately identified and fully promoted and enforced			the AQMA		the council website. Enforcement activity is fully documented in the council's Flare database.	
Emissions from developments and buildings	7	Promoting and delivering energy efficiency retrofitting projects in in public buildings using the GLA RE: NEW and RE: FIT programmes to replace old boilers / in combination with other energy conservation measures.	Building Services	Medium requires support from GLA funding streams	emissions reductions in the AQMA	Ongoing	Update in Annual Status Report	Will continue working in partnership with the GLA on upcoming projects.
Public health and awareness raising	8	Directors of Public Health (DsPHs) have been fully briefed on the AQ problem in the local authority area; what is being done, and what is needed.			Help ensure Air Quality is prioritised within public health.	Ongoing		

Public health and awareness raising	9	Public Health and Environmental Health Teams are supporting engagement with local stakeholders (businesses, schools, community groups and healthcare providers).	Public Health and Environmental Health	In-house	Co-ordinated approach will benefit Air Quality Initiatives	By April 2019	
Public health and awareness raising	10	Joint Strategic Needs Assessment (JSNA) has up to date information on air quality impacts on the population. Revised Health & Well Being Strategy to integrate air quality objectives.	Public Health and Environmental Health	In-house	Help ensure Air Quality is prioritised within public health.	Ongoing	
Public health and awareness raising	11	Strengthening co- ordination with Public Health by ensuring that at least one Consultant- grade public health specialist within the borough has air quality responsibilities outlined in their job profile	Public Health	In-house	Help ensure Air Quality is prioritised within public health.	Throughout the plan	
Public health and awareness	12	Engagement with businesses: disseminate	Public Health and	In-house	Citizens have opportunity to	By April 2019	

raising Public health and awareness raising	13	information to GP surgeries and pharmacies on how to help improve air quality and reduce exposure for patients and employees Promotion of availability of airTEXT	Environmental Health		learn how to limit exposure to poor air quality and play their part in reducing air pollution.			
Public health and awareness raising	14	Encourage schools to join the TfL STARS accredited travel planning programme through the MAQF school projects	Environmental Health and Smarter Travel teams	In-house	Reduction of Car use and NOx emissions in AQMA. Pollution	Ongoing	Update in Annual Status Report	
Public health and awareness raising	15	Air quality at schools	Environmental Health and Smarter Travel team	In-house	reduction and Exposure reduction strategies disseminate to wide range of different groups.			

Delivery	16	Seek to update local	Procurement	In-house	Efficient driving	Ongoing	Update in
servicing and		authority Procurement			and the use of		Annual
freight		policies to include a			fleet tracker		Status
		requirement for suppliers			tool		Report
		with large fleets to have			contributes to		
		attained Bronze Fleet			reduction in		
		Operator Recognition			emissions and		
		Scheme (FORS)			fleet operators		
		accreditation			awareness of		
					air quality		
					issues		
Delivery	17	Update Procurement	Procurement	In-house	The council is	Ongoing	Update in
servicing and		policies to bidders			leading by		Annual
freight		delivering goods and			example to		Status
		services with zero or low			encourage		Report
		emission vehicles.			reductions in		
					emissions.		
Delivery	18	Consolidation: Redbridge	Procurement	ТВС	Freight	Ongoing	Update in
servicing and		is currently looking at			consolidation		Annual
freight		freight consolidation for			can lead to a		Status
		deliveries to council			reduction in		Report
		buildings in partnership			NO2 and		
		with the London Borough			PM10/2.5		
		Consolidation Centre and			emissions as		
		Camden Council			less delivery		
					vehicles are on		
					the road.		

Borough fleet	19	Redbridge's own fleet is a	Engineering Services	ТВС	ТВС			Redbridge
actions		member of the Freight Transport Association with Truck Excellence accreditation; equivalent to bronze (FORS) accreditation. The council will explore the possibility of obtaining (FORS) Gold accreditation for its own fleet.		(possible staff resource implications)				staff already undertakes smarter driving training and implement fuel saving fleet measures. Will investigate if this can be improved upon.
Borough fleet actions	20	Increasing the number of electric, hybrid and cleaner vehicles in the boroughs' fleet. Redbridge are seeking to comply with the ULEZ standard with funding from Defra.	Engineering Services	High: Requires support from Defra and GLA funding streams.	NOx and PM emission reductions in the AQMA	Ongoing	Update in Annual Status Report	
Borough fleet actions	21	Accelerate uptake of new Euro VI vehicles in borough fleet.	Engineering Services	High	NOx emission and PM reductions in the AQMA	Ongoing	Update in Annual Status Report	

Borough fleet actions	22	Smarter Driver Training for drivers of vehicles in Borough Own Fleet i.e. through training of fuel efficient driving and providing regular re- training of staff	Engineering Services	In-house	NOx emission and PM reductions in the AQMA	Ongoing	
Localised solutions	23	Green Infrastructure	Environmental Health, Transportation and Planning	Medium: support MAQF and Section 106 funding	PM reductions in the AQMA	Ongoing	Update in Annual Status Report
Localised solutions	24	Low Emission Neighbourhoods (LENs)	Transportation	High: match funded support from the GLA	Modal shifts will lead to emission reductions in the AQMA	Ongoing	Update in Annual Status Report
Cleaner transport	25	Discouraging unnecessary idling by taxis, coaches and other vehicles (e.g. through anti-idling campaigns or enforcement activity)	Environmental Health and Redbridge Enforcement Team	In-house	Will lead to emissions reductions in the AQMA	Ongoing	Update in Annual Status Report

Cleaner transport	26	Increasing the proportion of electric, and ultra-low emission vehicles in Car Clubs and promote uptake amongst the public	Transportation	In-house	Will lead to emissions reductions in the AQMA	Ongoing	Update in Annual Status Report	
Cleaner transport	27	Free or discounted residential parking permits for electric vehicles (EV)	Parking Services	In-house	Increased EV take up leads to emission reductions	Ongoing	Update in Annual Status Report	
Cleaner transport	28	Installation of (EV) residential electric charge points	Transportation and Planning	LIP, GULCS and OLEV funding support available	Increased EV take up by infrastructure support will lead to emissions reductions	Ongoing	Update in Annual Status Report	
Cleaner transport	29	Installation of rapid chargers to help enable the take up of electric taxis, cabs and commercial vehicles (in partnership with TfL and/or OLEV)	Transportation	High	Increased EV take up by providing infrastructure will lead to emissions reductions	Ongoing	Update in Annual Status Report	

Cleaner transport	30	Reprioritisation of road space; reducing parking at some destinations and or restricting parking on congested high streets and A roads to improve bus journey times, cycling experience, and reduce emissions caused by congested traffic	Transportation and Planning	High	Potential reduced car use and increased modal shifts will lead to emissions reductions	Ongoing	Update in Annual Status Report	
Cleaner transport	31	Provision of infrastructure to support walking and cycling	Transportation	High LIP and LEN Funding Streams. Section 106 funding streams.	Increased walking and cycling by providing infrastructure will lead to emissions reductions from reduced car usage.	Ongoing	Update in Annual Status Report	

3. Planning Update and Other New Sources of Emissions

Table L. Planning requirements met by planning applications in Redbridge in 2016

Condition	Number
Number of planning applications reviewed for air quality impacts	79
Number of planning applications required to monitor for construction dust	13
Number of CHPs/Biomass boilers refused on air quality grounds	0
Number of CHPs/Biomass boilers subject to GLA emissions limits and/or other restrictions to reduce emissions	5
Number of AQ Neutral building and/or transport assessments undertaken	2
Number of AQ Neutral building and/or transport assessments not meeting the benchmark and so required to include additional mitigation	1
Number of planning applications with S106 agreements including other requirements to improve air quality	0
Number of planning applications with CIL payments that include a contribution to improve air quality	0
NRMM: Central Activity Zone and Canary Wharf Number of conditions related to NRMM included. Number of developments registered and compliant. Please include confirmation that you have checked that the development has been registered at <u>www.nrmm.london</u> and that all NRMM used on-site is compliant with Stage IIIB of the Directive and/or exemptions to the policy.	0
NRMM: Greater London (excluding Central Activity Zone and Canary Wharf) Number of conditions related to NRMM included. Number of developments registered and compliant. Please include confirmation that you have checked that the development has been registered at <u>www.nrmm.london</u> and that all NRMM used on-site is compliant with Stage IIIA of the Directive and/or exemptions to the policy.	2 conditions included

3.1 New or significantly changed industrial or other sources

London Borough of Redbridge confirms that there are no new or significantly changed industrial or other sources identified.

Appendix A Details of Monitoring Site QA/QC

A.1 Automatic Monitoring Sites

Air quality monitoring data provides a measure of actual concentrations and therefore exceedences of air quality objectives. Data also provides information on trends in air pollution and can provide the basis for verifying the various models used to predict future pollution levels.

In 2016 London Borough of Redbridge undertook automatic monitoring at the following two sites:

• **CM7** - **Redbridge 7** (Ley Street) located northeast of Ilford – an urban background site within the Ley Street Depot that is sited on Ley Street. The site monitored nitrogen dioxide, PM10 (by BAM), and ozone. Since 2016 this site began monitoring PM2.5 (by BAM). Redbridge 7 (Ley Street) was set up in 2014, and is also identified in this report as CM7.

• **CM4** - **Redbridge 4** (Wanstead) – an urban traffic site close to the A12 towards the southwest of the Borough. The site started operating in November 1999. The site monitors nitrogen dioxide, PM10 and PM2.5 (both by BAM). Until March 2012 it also monitored carbon monoxide and sulphur dioxide.

The sites represent relevant exposure within the Borough. The sites are part of the London Air Quality Network and therefore the standards of QA/QC are similar to those of the government's AURN sites. Fortnightly local site operator (LSO) zero/span calibrations of the gas analysers are carried out by the local authority, with subsequent data collection, validation and ratification undertaken by the ERG at King's College London. In all cases the data are fully ratified unless reported otherwise. Details of the sites can be found at www.londonair.org.uk

UKCAS accredited independent site audits are carried out every 6 months by the National Physics Laboratory (NPL). Additional six monthly equipment service visits by Enviro Technology Services Plc.

The Council previously operated three other automatic monitoring stations in the Borough: **Redbridge 2** - a roadside site on Ilford Broadway closed in 2003, **Redbridge 3** – a kerbside site at Fulwell Cross closed in 2012, and **Redbridge 5** – a roadside site in South Woodford closed in 2012.

PM₁₀ Monitoring Adjustment

The LLAQM.TG16 guidance highlights that Met-One PM_{10} Unheated BAM 1020 instruments conform to the equivalence criteria relating to the gravimetric European reference method. A correction using a factor of 1.2 is automatically applied to adjust for slope.

A.2 Diffusion Tube Quality Assurance / Quality Control

- Diffusion Tubes are prepared and analysed by UKAS accredited Gradko International Ltd
- Diffusion Tubes are prepared using 50% triethanolamine with acetone method and analysed using UV spectrophotometry
- The lab follows the procedures set out in the Defra Technical Guidance for LAQM TG(16).
- For details attaining to 'results' precision, bias adjustment factors; and reference methods are as follows:

Results of laboratory precision (tube precision and WASP results):

The LAQM website gives the following precision results for Gradko 50% TEA in acetone:

2016 Good (16 studies)

The laboratory performance of Gradko International was tested in April to November 2015 under AIR NO2 PT Rounds AR012, AR013, AR015 and AR016. The performance was 100% in all rounds.

The version of the bias adjustment factor database used is: 03/17

			Monthly means [μg/m ³] (not bias adjusted)											
	Site													
Tube nos.	ID	Site name	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1,2,3	DT A	Mayfield School	41.7	27.2	26.1	21.7	23.7	16.6		17.4	28.1	28.5	33.1	43.8
4,5,6	DT B	Ilford Lane	61.6	51.6	49.8	44.8	51.9	47.5	53.9	56.0	53.2	55.8	57.2	67.4
7,8,9	DT C	Ilford Lane BP	63.4	52.5	49.6	44.1	57.6	45.5	47.8	55.7	58.4	60.1	62.0	66.9
10,11,12	DT D	Ley Street	34.0	31.7	25.8	23.1	27.4	19.8	22.5	21.7	28.2	30.5	33.0	40.3
13,14,15	DT E	Gardner Close	49.2	43.5	40.6	35.6	41.4	31.2	36.5	30.7	47.1	48.4	41.0	60.8
16,17,18	DT F	Fulwell Cross	48.7	47.9	37.6	40.2	47.0	40.5	43.4	33.7	48.3	45.4	46.2	56.9
19,20,21	DT G	Perth Road	54.5	61.7	60.2	55.3	37.5	42.9	49.6	31.8	69.4	52.8	66.5	106.8
22,23,24	DT H	WestB Eastern Ave	56.4	56.9	41.6	35.0	53.3	54.7	37.3	46.1	45.6	58.9	42.3	58.2
25,26,27	DTI	Central Res	56.0	46.0	41.5	42.2	77.0	38.9	63.4	37.0	74.6	56.8	45.9	53.8
28,29,30	DT J	EastB Eastern Ave	59.4	47.1	40.0	54.3	51.3	54.2	68.7	40.9	58.7	46.6	55.4	67.6
31,32,33	DT K	Parham Drive	81.8	53.4	45.2	50.7	30.3	41.8	37.7	66.1	49.6	49.6	46.8	63.6
34,35,36	DTL	NCR Nth Royston Gdns	47.8	47.1	48.3	43.9	50.8	41.8	31.8	34.2	41.9	57.4	56.3	53.1
37,38,39	DT M	NCR Sth Wanstead Park	87.5	75.5	70.7	76.3	71.9	62.6	76.0	74.3	90.4	81.3	86.0	85.9
40,41,42	DT N	Ethal Davis School	39.2	28.8	27.7	27.6	21.7	19.8	24.0	18.5	18.6	27.4	31.7	41.9
43,44,45	DT O	Grove Road	62.3	45.1	43.3	38.6	46.5	36.2	44.8	38.8	55.7	44.0	51.5	70.3
46,47,48	DT P	High Road Woodford	44.8	42.0	37.4	31.1	37.0	28.8	30.6	26.2	44.7	35.6	40.8	53.6
49,50,51	DT Q	Chigwell Rd M11	59.2	42.7	44.3	36.1	39.9	32.3	43.3	34.2	46.0	40.3	17.1	54.6
52,53,54	DT R	Winston Way Primary	63.4	51.8	52.3	57.3	54.7	49.1	54.4	47.8	58.3	58.7	64.1	55.7
55,56,57	DT S	Winston Way Gyratory	53.6	57.6	54.8	55.6	59.8	50.1	52.7	46.1	56.9	60.3	65.6	65.8
58,59,60	DT T	Chadwell Heath Primary	56.6	46.7	46.6	45.7	43.6	36.9	42.3	35.0	47.9	46.9	49.7	59.0
61,62,63	DT U	Goodmayes Primary	50.8	33.4	34.4	34.3	31.8	27.0	32.3	26.8	39.1	35.7	42.8	49.8
64,65,66	DT V	Isaac Newton Academy	39.7	37.0	30.3	31.2	28.8	25.3	27.9	22.6	31.8	35.4	39.6	46.6
67,68,69	DT W	Inside Winston Way Prim.	43.0	36.3	38.0	37.4	33.2	29.2	28.1	24.9	34.0	38.3	49.0	52.7

The bias adjustment factor has been applied to the monthly and annual means as follows:

2016		Calcı	lation of peri	iod adjuste	d and bias	adjusted a	nnual mear	IS		
				Calcula	ation of perio	d adjustment	factors		bias factor	1.03
Site ID	Site name	Period mean	Period	May - Sep period mean	Ratio Am/Pm May-Sep	Aug - Dec period mean	Ratio Am/Pm Aug-Dec	Period adjustm'nt factor (R_a)	Annual means before bias adj	Bias adjusted annual means
DT A	Mayfield School	28.0	11 months					1.000	28.0	28.8
DT B	Ilford Lane	54.2	Whole year					1.000	54.2	55.9
DT C	Ilford Lane BP	55.3	Whole year					1.000	55.3	57.0
DT D	Ley Street PABX	28.2	Whole year					1.000	28.2	29.0
DT E	Gardner Close	42.2	Whole year					1.000	42.2	43.4
DT F	Fulwell Cross	44.6	Whole year					1.000	44.6	46.0
DT G	Perth Road	57.4	Whole year					1.000	57.4	59.1
DT H	WestB Eastern Ave	48.9	Whole year					1.000	48.9	50.3
DT I	Central Res	52.8	Whole year					1.000	52.8	54.4
DT J	EastB Eastern Ave	53.7	Whole year					1.000	53.7	55.3
DT K	Parham Drive	51.4	Whole year					1.000	51.4	52.9
DT L	NCR Nth Royston Gdns	46.2	Whole year					1.000	46.2	47.6
DT M	NCR Sth Wanstead Park	78.2	Whole year					1.000	78.2	80.5
DT N	Ethal Davis School	27.2	Whole year					1.000	27.2	28.1
DT O	Grove Road	48.1	Whole year					1.000	48.1	49.5
DT P	High Road Woodford	37.7	Whole year					1.000	37.7	38.8
DT Q	Chigwell Rd M11	40.8	Whole year					1.000	40.8	42.1
DT R	Winston Way Primary	55.6	Whole year					1.000	55.6	57.3
DT S	Winston Way Gyratory	56.6	Whole year					1.000	56.6	58.3
DT T	Chadwell Heath Primary	46.4	Whole year					1.000	46.4	47.8
DT U	Goodmayes Primary	36.5	Whole year					1.000	36.5	37.6
DT V	Isaac Newton Academy	33.0	Whole year					1.000	33.0	34.0
	Inside Winston Way Prim	37.0	Whole year					1.000	37.0	38.1

Factor from Local Co-location Studies (if available)

The local co-location studies at the Redbridge 7, Ley Street, CMT = DT D and Redbridge 4, Gardner Close, CM4 = DT E gave an average local bias factor for 2016 of 1.08. This was derived by averaging the B Values from the Local Bias Adjustment Tool in accordance with the method in paragraph 7.192 of LAQM TG16. The average is then expressed as factor. 1 is added to the value. Finally an inverse is taken to give the bias adjustment factor.

2016	Bias adjustment factor
Background Redbridge local: CM7=DT D	
Bias A value = 1.17	
Bias B value = -15%	
Roadside Redbridge local: CM4=DT E	
Bias A value = 1	
Bias B value = 0%	
Average local: CM7=DT D and CM4=DT E	
As in method in paragraph 7.192 of LAQM (TG16)	= 1.08
Local Bias A (see discussion below) = 1.17	
National Default used – (16 studies)	1.03

Discussion of Choice of Factor to Use

For each of the two local sites there were 12 months of "Good Precision" data. Whilst overall automatic data capture at CM7 was good with 12 months of "Good data capture", automatic data capture at CM4 was poor with only 9 months of "Good data capture". With the automatic data capture at CM4 being less than 90%, I have disregarded the local averaged factor of 1.08 and used the single CM7 Bias A value of 1.17 to represent the local factor. The diffusion tubes are in similar exposure positions to the sampler inlets of the chemiluminescent analysers at the continuous sites. In deciding upon the choice of factor to use, we have applied the National Default of 1.03 in our calculations in preference to the local factor of 1.08 or 1.17 since the former derives from good precision data derives and sixteen study sites.

Bias adjustment factors for previous years:

2015: A national bias factor of 0.95 used (Lab: ESG Glasgow)

2014: A national bias factor of 0.76 used (Lab: ESG Glasgow)

A.3 Adjustments to the Ratified Monitoring Data

Short-term to Long-term Data Adjustment

No short to long term adjustments required this year to the ratified monitoring data.

Appendix B Full Monthly Diffusion Tube Results for 2016

Table N.NO2 Diffusion Tube Results

		Valid	Annual Mean NO ₂ (Bias Adj Factor =1.03)													
Site ID	Valid data capture for monitoring period % ^a		Jan	Feb	March	Apr	Мау	June	Jul	Aug	Sept	Oct	Nov	Dec	Annual mean – raw data ^c	Annual mean – bias adjusted ^c
DT A	92	92	41.7.	27.2	26.1	21.7	23.7	16.6		17.4	28.1	28.5	33.1	43.8	28.0	28.8
DT B	100	100	61.6	51.6	49.8	44.8	51.9	47.5	53.9	56.0	53.2	55.8	57.2	67.4	54.2	55.9
DT C	100	100	63.4	52.5	49.6	44.1	57.6	45.5	47.8	55.7	58.4	60.1	62.0	66.9	55.3	57.0
DT D	100	100	34.0	31.7	25.8	23.1	27.4	19.8	22.5	21.7	28.2	30.5	33.0	40.3	28.2	29.0
DT E	100	100	49.2	43.5	40.6	35.6	41.4	31.2	36.5	30.7	47.1	48.4	41.0	60.8	42.2	43.4
DT F	100	100	48.7	47.9	37.6	40.2	47.0	40.5	43.4	33.7	48.3	45.4	46.2	56.9	44.6	46.0
DT G	100	100	54.5	61.7	60.2	55.3	37.5	42.9	49.6	31.8	69.4	52.8	66.5	106.8	57.4	59.1
DT H	100	100	56.4	56.9	41.6	35.0	53.3	54.7	37.3	46.1	45.6	58.9	42.3	58.2	48.9	50.3
DT I	100	100	56.0	46.0	41.5	42.2	77.0	38.9	63.4	37.0	74.6	56.8	45.9	53.8	52.8	54.4
DT J	100	100	59.4	47.1	40.0	54.3	51.3	54.2	68.7	40.9	58.7	46.6	55.4	67.6	53.7	55.3
DT K	100	100	81.8	53.4	45.2	50.7	30.3	41.8	37.7	66.1	49.6	49.6	46.8	63.6	51.4	52.9
DT L	100	100	47.8	47.1	48.3	43.9	50.8	41.8	31.8	34.2	41.9	57.4	56.3	53.1	46.2	47.6
DT M	100	100	87.5	75.5	70.7	76.3	71.9	62.6	76.0	74.3	90.4	81.3	86.0	85.9	78.2	80.5
DT N	100	100	39.2	28.8	27.7	27.6	21.7	19.8	24.0	18.5	18.6	27.4	31.7	41.9	27.2	28.1
DT O	100	100	62.3	45.1	43.3	38.6	46.5	36.2	44.8	38.8	55.7	44.0	51.5	70.3	48.1	49.5
DT P	100	100	44.8	42.0	37.4	31.1	37.0	28.8	30.6	26.2	44.7	35.6	40.8	53.6	37.7	38.8
DT Q	100	100	59.2	42.7	44.3	36.1	39.9	32.3	43.3	34.2	46.0	40.3	17.1	54.6	40.8	42.1

	Valid data capture for monitoring period % ^a	Valid					An	nual M	ean N	O2 (Bi	as Adj	Factor	=1.03)		
Site ID		capture	Jan	Feb	March	Apr	May	June	Jul	Aug	Sept	Oct	Nov	Dec	Annual mean – raw data ^c	Annual mean – bias adjusted ^c
DT R	100	100	63.4	51.8	52.3	57.3	54.7	49.1	54.4	47.8	58.3	58.7	64.1	55.7	55.6	57.3
DT S	100	100	53.6	57.6	54.8	55.6	59.8	50.1	52.7	46.1	56.9	60.3	65.6	65.8	56.6	58.3
DT T	100	100	56.6	46.7	46.6	45.7	43.6	36.9	42.3	35.0	47.9	46.9	49.7	59.0	46.4	47.8
DT U	100	100	50.8	33.4	34.4	34.3	31.8	27.0	32.3	26.8	39.1	35.7	42.8	49.8	36.5	37.6
DT V	100	100	39.7	37.0	30.3	31.2	28.8	25.3	27.9	22.6	31.8	35.4	39.6	46.6	33.0	34.0
DT W	100	100	43.0	36.3	38.0	37.4	33.2	29.2	28.1	24.9	34.0	38.3	49.0	52.7	37.0	38.1

Exceedance of the NO₂ annual mean AQO of 40 μ gm⁻³ are shown in **bold**.

^a data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

^b data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c Means should be "annualised" in accordance with LLAQM Technical Guidance, if valid data capture is less than 75%

Distance Adjustment

The bias-adjusted NO_2 annual mean diffusion tube concentration exceedances reported at the sites listed in table N (above) have been distance corrected for the nearest location relevant for exposure. These predictions have been done using the NO_2 fall-off with distance calculator available on the LAQM Support website.

The following factors are have been used to predict the annual mean NO2 concentration (in $\mu g/m^3$) at the the receptor/relevant exposure :

- How far from the KERB is the location where the measurement was made (in meters)
- How far from the KERB is the receptor/relevant exposure (in meters)
- The local annual mean background NO2 concentration (in $\mu g/m^3$)
- The measured annual mean NO2 concentration (in $\mu g/m^3$)

The measurement and background concentrations must be for the same year. The background concentration could come from the national maps published at (<u>http://laqm.defra.gov.uk/review-and-assessment/tools/background-maps.html</u>) or from a nearby monitor in a background location. 2016 National map background concentrations have been in this report. Use of a measured result from nearby background monitor for background concentration will be denoted by *

Data for the distance of the kerb to the measurement location has been taken from table B in this report.

The calculator follows the procedure set out in paragraphs 7.77 to 7.79 of LAQM TG(16) and Box 2.3 of LAQM TG(09). The results will have greater uncertainty than measured data. More confidence can be placed in results where the distance between the monitor and the receptor is small than where it is large. Each distance should be greater than 0.1m and less than 50m. The NO₂ fall off with distance correction has only been applied to sites with relevant exposure that exceed the AQ objectives and that also meet the distance requirement.

Table O. NO2 Distance Corrected Diffusion Tube Results

Site ID	Annual mean – raw data ^c	Annual mean – bias adjusted c	Local Annual mean – background	Distance of measurement from kerb of nearest road (m)	Distance of receptor from kerb (m)	Annual mean – distance corrected
DT A	28.0	28.8				
DT B	54.2	55.9	29.1	2.3	2	56.8
DT C	55.3	57.0	24.2	3.0	4.9	52.8
DT D	28.2	29.0				
DT E	42.2	43.4	27.6	4.2	11.3	39
DT F	44.6	46.0	19.9	1.2	8.7	35.2
DT G	57.4	59.1	25.1	1.5	6.4	48.3
DT H	48.9	50.3	25.1	1.3	4.3	43.9
DTI	52.8	54.4				
DT J	53.7	55.3	25.1	0.9	7.5	42.7
DT K	51.4	52.9	25.1	40	43.9	50.9
DT L	46.2	47.6	31.2	2.1	26.2	37.8
DT M	78.2	80.5	31.2	3.0	4.8	74.5
DT N	27.2	28.1				
DT O	48.1	49.5	32.2	8.0	12.8	46.7
DT P	37.7	38.8				
DT Q	40.8	42.1				
DT R	55.6	57.3	25.6	3.2	16.8	43.5
DT S	56.6	58.3				

Site ID	Annual mean – raw data ^c	Annual mean – bias adjusted c	Local Annual mean – background	Distance of measurement from kerb of nearest road (m)	Distance of receptor from kerb (m)	Annual mean – distance corrected
DT T	46.4	47.8	20.8	0.6	6.6	36.0
DT U	36.5	37.6				
DT V	33.0	34.0				
DT W	37.0	38.1				