Redbridge Air Quality Annual Status Report for 2015 Date of publication: July 2016

This report provides a detailed overview of air quality in the London Borough of Redbridge during 2015. It has been produced to meet the requirements of the London Local Air Quality Management statutory process¹.

Contact details

Luke Drysdale (Air Quality Lead Officer) Lynton House (10th Floor Front) 255-259 High Road, Ilford IG1 1NY

Tel: 0208 708-5611

Email: luke.drysdale@redbridge.gov.uk

¹ LLAQM Policy and Technical Guidance 2016 (LLAQM.TG(16)). https://www.london.gov.uk/what-we-do/environment/pollution-and-air-quality/working-boroughs

CONTENTS

Abbrevia	ations3
1. Air	Quality Monitoring5
1.1	Locations5
1.2	Comparison of Monitoring Results with AQOs
2. Acti	ion to Improve Air Quality12
2.1	Air Quality Action Plan Progress
3. Plar	nning Update and Other New Sources of Emissions19
3.1	New or significantly changed industrial or other sources
Appendi	x A Details of Monitoring Site QA/QC20
A.1	Automatic Monitoring Sites
A.2	Diffusion Tube Quality Assurance / Quality Control
A.3	Adjustments to the Ratified Monitoring Data
Appendi	x B Full Monthly Diffusion Tube Results for 2015 and Distance Adjustment26
Tables	
Table A.	Summary of National Air Quality Standards and Objectives4
Table B.	Details of Automatic Monitoring Sites for 20155
Table C.	Details of Non-Automatic Monitoring Sites for 20155
Table D.	Annual Mean NO_2 Ratified and Bias-adjusted Monitoring Results ($\mu g \ m^{-3}$)7
Table E.	NO_2 Automatic Monitor Results: Comparison with 1-hour Mean Objective9
Table G.	PM_{10} Automatic Monitor Results: Comparison with 24-Hour Mean Objective10
Table H.	Annual Mean PM _{2.5} Automatic Monitoring Results (μg m ⁻³)11
Table J. required	Commitment to Cleaner Air Borough Criteria <i>This section is voluntary, although you are</i> to complete it if you wish to maintain your Cleaner Air Borough status12
Table K.	Delivery of Air Quality Action Plan Measures15
Table M.	
Table N.	NO ₂ Diffusion Tube Results26
Table O.	

Abbreviations

AQAP Air Quality Action Plan

AQMA Air Quality Management Area

AQO Air Quality Objective

BEB Buildings Emission Benchmark

CAB Cleaner Air Borough
CAZ Central Activity Zone

EV Electric Vehicle

GLA Greater London Authority

LAEI London Atmospheric Emissions Inventory

LAQM Local Air Quality Management

LLAQM London Local Air Quality Management

NRMM Non-Road Mobile Machinery

 PM_{10} Particulate matter less than 10 micron in diameter $PM_{2.5}$ Particulate matter less than 2.5 micron in diameter

TEB Transport Emissions Benchmark

TfL Transport for London

 Table A.
 Summary of National Air Quality Standards and Objectives

Pollutant	Objective (UK)	Averaging Period	Date ¹
Nitrogen dioxide - NO ₂	200 μg m ⁻³ not to be exceeded more than 18 times a year	1-hour mean	31 Dec 2005
	40 μg m ⁻³	Annual mean	31 Dec 2005
Particles - PM ₁₀	50 μg m ⁻³ not to be exceeded more than 35 times a year	24-hour mean	31 Dec 2004
	40 μg m ⁻³	Annual mean	31 Dec 2004
Particles - PM _{2.5}	25 μg m ⁻³	Annual mean	2020
	Target of 15% reduction in concentration at urban background locations	3 year mean	Between 2010 and 2020
Sulphur Dioxide (SO ₂)	266 μg m ⁻³ not to be exceeded more than 35 times a year	15 minute mean	31 Dec 2005
	350 μg m ⁻³ not to be exceeded more than 24 times a year	1 hour mean	31 Dec 2004
	125 μg m ⁻³ mot to be exceeded more than 3 times a year	24 hour mean	31 Dec 2004

Note: ¹by which to be achieved by and maintained thereafter

1. Air Quality Monitoring

1.1 Locations

 Table B.
 Details of Automatic Monitoring Sites for 2015

Site ID	Site Name	X (m)	Y (m)	Site Type	In AQMA?	Distance from monitoring site to relevant exposure (m)	Distance to kerb of nearest road (N/A if not applicable) (m)	Inlet height (m)	Pollutants monitored	Monitoring technique
CM7	Redbridge 7 Ley Street	544454.8	187681.9	Urban background	Υ	70	50m	2.7	NO ₂ ,PM ₁₀ , PM _{2.5} , O ₃	Chemiluminescent; BAM
CM4	Redbridge 4 Gardner Close	540828.3	188367.9	Urban traffic	Υ	12	12m	2.	NO ₂ ,PM ₁₀ , PM _{2.5} ,	Chemiluminescent; BAM

 Table C.
 Details of Non-Automatic Monitoring Sites for 2015

Site ID	Site Name	X (m)	Y (m)	Site Type	In AQ MA?	Distance from monitoring site to relevant exposure (m)	Distance to kerb of nearest road (N/A if not applicable) (m)	Site height (m)	Pollutants monitored	Tube co- located with an automatic monitor? (Y/N)
DT A	Mayfield School	547022.3	187232.3	Urban Background	Y	<5m	>100	1.5	NO ₂	N
DT B	Ilford Lane	543688.0	186139.6	Roadside	Υ	<5m	2.3	3.1	NO ₂	N
DT C	Ilford Lane BP	544132.4	184945.6	Roadside	Υ	<5m	3.0	2.7	NO ₂	N
DT D	Ley Street	544454.8	187681.9	Urban Background	Υ	>5m	50m	2.7	NO ₂	Y

DT E	Gardner Close	540828.3	188367.9	Roadside	Y	<5m	4.2	2.6	NO ₂	Υ
DT F	Fullwell Cross	544560.7	190400.8	Roadside	Y	<5m	1.2	1.7	NO ₂	Ν
DT G	Perth Road	543421.7	188322.6	Roadside	Υ	<5m	1.5	2.8	NO ₂	Ν
DT H	Westbound Eastern Ave	543450.6	188371.1	Roadside	Υ	<5m	1.3	2.4	NO ₂	N
DT I	CentralRes Eastern Ave	543453.7	188384.4	Roadside	Y	<5m	2.0	2.5	NO ₂	N
DT J	Eastbound Eastern Ave	543442.0	1888400. 2	Kerbside	Υ	<5m	0.9	2.7	NO ₂	N
DT K	Parham Dr	543498.3	188427.6	Near Road	Y	<5m	40m from Eastern Ave	2.6	NO ₂	N
DTL	North Circ. Rd, Northbound Royston Gd	541816.3	188161.3	Roadside	Y	<5m	2.1	2.8	NO ₂	N
DT M	North Circ. Rd, Southbound Wanstead Pk	541887.8	188136.2	Roadside	Y	<5m	3.0	3.0	NO ₂	N
DT N	Ethel Davis School	546675.6	188886.1	Near Road	Y	<5m	15	2.8	NO ₂	N
DT O	Grove Road	540025.7	190494.3	Roadside	Υ	<5m	8.0 horizontal	2.7	NO ₂	Ν
DT P	High Road Woodford	540076.0	190682.6	Roadside	Υ	<5m	2.7	2.6	NO ₂	N
DT Q	M11	541992.1	191799.9	Near Road	Υ	>10m	35	2.4	NO ₂	Ν
DT R	Winston Way Primary Sch.	544364.1	186597.4	Roadside	Υ	<5m	3.2	2.8	NO ₂	N
DTS	Winston Way Gyratory	544360.4	186615.3	Kerbside	Y	>10m	0.9	2.6	NO ₂	N
DTT	Chadwell Heath Primary School	547158.3	187699.4	Kerbside	Y	<5m	0.6	2.8	NO ₂	N
DT U	Goodmayes Primary School	546665.3	187046.3	Roadside	Y	<5m	9.0	2.6	NO ₂	N
DT V	Isaac Newton	545030.2	186919.8	Near Road	Y	<5m	15	2.6	NO ₂	N

	Academy									
DT W	Inside Winston	544332.3	186571.3	Near Road	Y	<5m	17	3.0	NO ₂	N
	Way Prim.Sch									

1.2 Comparison of Monitoring Results with AQOs

The results presented are after adjustments for "annualisation" and for distance to a location of relevant public exposure, the details of which are described in Appendix A.

Table D. Annual Mean NO₂ Ratified and Bias-adjusted Monitoring Results (μg m⁻³)

		Valid data	Valid data			Annual M	ean Concentra	ation (µgm ⁻³)		
Site ID	Site type	capture for monitoring period % ^a	capture 2015 % ^b	2009°	2010 °	2011 ^c	2012 °	2013°	2014 °	2015 °
CM1	Automatic Background			33.6	33.0	33.3	36.8	35.4	32.8	
СМ7	Automatic Background	95	95						34.6	33.1
СМЗ	Urban Traffic			47.8	51.1	52.0				
CM4	Urban Traffic	85	85	52.0	47.9	49.2	48.3	45.0	48.3	41.0
CM5	Urban Traffic		2	51.3	55.0	54.2				

Notes: Exceedance of the NO₂ annual mean AQO of 40 µgm⁻³ are shown in **bold**.

NO₂ annual means in excess of 60 µg m⁻³, indicating a potential exceedance of the NO² hourly mean AQS objective are shown in bold and underlined.

^a data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

b data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c Means should be "annualised" in accordance with LLAQM Technical Guidance, if valid data capture is less than 75%

Trends in Annual Mean NO₂ Concentrations

The data above shows the annual mean NO₂ concentrations 7 year trend from 2009 to 2015. The results indicate that the annual mean objective was exceeded for all years monitored at the CM3 (Fullwell Cross) and CM5 (Grove Road) roadside monitoring sites until their closure in 2012. The annual mean objective was also exceeded for all 7 years monitored at the roadside site CM4 (Gardner Close) however the results at CM4 show a distinct downward trend over that period. The background site CM1 at Perth Terrace has shown steady concentrations until its closure in 2014. Similarly the background site CM7 at Ley Street has shown shown steady concentrations since opening in 2014. Both background sites CM1 and CM7 have continually met the annual mean objective concentration.

Table E. NO₂ Automatic Monitor Results: Comparison with 1-hour Mean Objective

	Valid data	Valid data	Number of Hourly Means > 200 μgm ⁻³							
Site ID	capture for monitoring period % ^a	capture 2015 % ^b	2009 ^c	2010 °	2011 ^c	2012 °	2013 ^c	2014 °	2015 °	
CM1			0	0	0	0	1	0		
CM7	95	95						0	10	
СМЗ			0	0	1					
CM4	85	85	0	1	0	9	1	0	0	
CM5			0	0	0					

Notes: Exceedance of the NO₂ short term AQO of 200 μgm⁻³ over the permitted 18 days per year are shown in **bold**.

Annual Mean PM₁₀ Automatic Monitoring Results (µg m⁻³) Table F.

	Valid data	Valid data	Annual Mean Concentration (μgm ⁻³)							
Site ID	capture for monitoring period % ^a	capture 2015 % ^b	2009°	2010 °	2011 ^c	2012 °	2013 ^c	2014 °	2015 °	
CM1(Background)			15.7	14.7	16.3	14.9	17.7	16.9		
CM7(Background)	78	78						22.9	18.8	

data capture for the monitoring period, in cases where monitoring was only carried out for part of the year data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c Means should be "annualised" in accordance with LLAQM Technical Guidance, if valid data capture is less than 75%

	Valid data capture for monitoring period % ^a	Valid data	Annual Mean Concentration (μgm ⁻³)							
Site ID		capture 2015 % ^b	2009°	2010 °	2011 ^c	2012 °	2013 ^c	2014 °	2015 °	
CM3(Roadside)			26.5	30.9	28.9					
CM4(Roadside)	75	38	31.8	31.1	25.9	27.0	30.3	25.4	17.0	
CM5(Roadside)			25.4	23.1	27.6					

Notes: Exceedance of the PM₁₀ annual mean AQO of 40 µgm⁻³ are shown in **bold**.

Table G. PM₁₀ Automatic Monitor Results: Comparison with 24-Hour Mean Objective

	Valid data	Valid data	Number of Daily Means > 50 μgm ⁻³							
Site ID	capture for monitoring period % ^a	capture 2015 % ^b	2009 ^c	2010 ^c	2011 ^c	2012 ^c	2013 ^c	2014 ^c	2015 °	
CM1(Background)			1	0	5	2(35)	2	5(35)		
CM7(Background)	78	78						7(36)	3(30)	
CM3(Roadside)			5	17	29	6(52)				
CM4(Roadside)	75	38	17	18	11	18	23	9(43)	1	

Notes: Exceedance of the PM₁₀ short term AQO of 50 μ g m⁻³ over the permitted 35 days per year or where the 90.4th percentile exceeds 50 μ g m⁻³ are shown in **bold**. Where the period of valid data is less than 90% of a full year, the 90.4th percentile is shown in brackets after the number of exceedances.

^a data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

b data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c Means should be "annualised" in accordance with LLAQM Technical Guidance, if valid data capture is less than 75%

Table H. Annual Mean PM_{2.5} Automatic Monitoring Results (μg m⁻³) (PM_{2.5} Monitor installed at CM7 April 2016. Data will be available for ASR 2017)

	Valid data	capture for capture		Annual Mean Concentration (μgm ⁻³)							
Site ID	monitoring period % ^a		2009°	2010 °	2011°	2012 °	2013 ^c	2014 °	2015 °		
CM7(Background)											

Notes: Exceedance of the PM_{2.5} annual mean AQO of 25 µgm⁻³ are shown in **bold**.

^a data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

b data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c Means should be "annualised" in accordance with LLAQM Technical Guidance, if valid data capture is less than 75%

^a data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

b data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c Means should be "annualised" in accordance with LLAQM Technical Guidance, if valid data capture is less than 75%

2. Action to Improve Air Quality

Table J. Commitment to Cleaner Air Borough Criteria

Theme	Crit	eria	Achieved (Y/N)	Evidence
1. Political leadership			Y	Agreed by cabinet and signed by the council leader in 2013.
	1.b	Provided an up-to-date Air Quality Action Plan (AQAP), fully incorporated into LIP funding and core strategies.	Y	The 2016 AQAP is currently being revised and when complete it will be available online at: http://www2.redbridge.gov.uk/cms/planning_and_the_environment/the_environment-2/the_environment/environmental_health/pollution_control/air_quality.aspx
				The AQAP is Incorporated into LIP process/public health via core stragies such as the Redbridge Environmental Action Plan (REACT), the Local Plan and Development Framework,LIP Transport Strategy, and current JSNA with view for incorporation into the revised Health & Wellbeing Strategy 2016-19, which scheduled for revision in late 2016.
2. Taking action	2.a	Taken decisive action to address air pollution, especially where human exposure and vulnerability (e.g. schools, older people, hospitals etc) is highest.	Y	Redbridge MAQF schools/public health projects. Modal shifts to more sustainable transport forms and reduced car usage was achieved with round 1 of the MAQF schools projects. Consequently less childern have been exposed to harmful pollution associated with repeated car use.
				Round 2 of the MAQF schools/public health project and the Low Emission Neighbourhood (LEN)project implementation aim to achieve more sustainable modal shift and reduced car usage which will reduce pollution and assocaited exposure. Strategic travel planning in the schools project will enable children parents to plan school journeys along less polluted routes.
				Promoting AirText in in the borough care homes and social service drop in centres so that older residents can better manage their exposure.
	2.b	Developed plans for business engagement (including optimising deliveries and supply chain), retrofitting public buildings using the RE:FIT framework, integrating no engine idling awareness raising into the work of civil enforcement officers, (etc etc)	Y	Lynton House has been retrofitted with a range of energy saving measures using the RE:FIT framework to reduce its carbon foot print. No engine idling awarenes and enforcement has been addressed at cabinet level for implementation and has been incorporated into the air quality action plan (AQAP).
				The council is currently assessing the feasibilty of local freight consolodation.

	2.c	Integrated transport and air quality, including by improving traffic flows on borough roads to reduce stop/start conditions	Y	There are various ongoing LIP funded transport projects across the borough which implement actions that delver air quality benefits. Examples are junctions upgrades to radial amd orbital corridors to improve traffic flow and public transport reliability. Addressing trafficlight phasing issues with TFL. Additional improved cycle lanes and walking routes borough wide with improved journey connectivity, cycle parking and enhanced lighting to facilitate an increase in walking and cycling locallyand increased use of public transport.
	2.d	Made additional resources available to improve local air quality, including by pooling its collective resources (s106 funding, LIPs, parking revenue, etc).	Y	Matchfunding for MAQF project: Round 1 £ 155,000 Round 2 £ 51,000
3. Leading by example	from others			One full time AQ officer. Resource investment in AQ officer's training through the MSc in Air Quality Management and Control at Birmingham University and membership of the Institute of Air Quality Management (IAQM). Officer has aquired the necessary AQ competencies to complement and drive the action of others. Examples are working with other departments in the council to influence proactive air quality measures such as introducing anti idling measures in the borough to discourage unecessacry vehicle engine idling. Driving sustainable behaviour change through past and current MAQF projects. Lobbied the Mayor of London to include the London Borough of Redbridge in a potentially proposed expanded ULEZ.
	3.b	Maintained an appropriate monitoring network so that air quality impacts within the borough can be properly understood	Υ	Two permanent AQM sites and diffusion tubes in triplicate at various locations. Reference PM2.5 monitoring has been added to the background AQM site at Ley Stree to better understand the impact of this species. Additional monitoring capability around schools has been implemented to assist in gaining a better understanding in AQ impacts in these locations.
	3.c	Reduced emissions from council operations, including from buildings, vehicles and all activities.	Y	NO2 and particulate emission reductions achieved by upgrading council fleet to Euro V and Euro IV specifications. All fleet is LEZ compliant and preparations are underway to ensure that all council fleet will be Euro IV compliant for ULEZ implementation regardless of the final agreed extension of the zone. Council carbon emission reduction programme in place promoting and implementing measures to reduce carbon emissions from energy use and transportation. Examples are the council's participation the de-centralised energy DEMAP programme, increased provision of sustainable transport options, infrastructure and training. Susaintainable upgrades to council buildings to optimise engery usage and reduce emissions.
	3.d	Adopted a procurement code which reduces emissions from its own and its suppliers activities, including from buildings and vehicles operated by and on their behalf (e.g. rubbish trucks).	Y	Currently as a result of our adopted greener fleet procurement code, from a total of 50 refuse vehicles, 19 meet Euro VI standard, 14 meet Euro V and 17 meet Euro IV. 10 new Euro VI have been ordered and all Euro IV and V trucks will be replaced by Euro VI. This will result in significant emission reductions of NOx, primary NO2 and particulates. There are additional 285 fleet vehicles. The entire fleet will be Euro VI compliant by 2018 which will result in further emission reductions.

4. Using the planning system	4.a	Fully implemented the Mayor's policies relating to air quality neutral, combined heat and power and biomass.	Y	All approved planning applications must meet the Mayor's requirements relating to AQ neutral, CHP and Biomass. Register is kept on applications that have been subject to AQ neutral and AQ assessment evaluation. Planning conditions are used to ensure that emissions from demolition, building work, on-site machinery, NRMM and transport activites are minimised. Limiting the number of parking spaces with new development, implementing more cycle parking facilities and electric vehicle charging points.
	4.b	Collected s106 from new developments to ensure air quality neutral development, <i>where possible</i>	Y	Planning applications for new developments are evaluted for the potential for s106 contributions. No contributions have been collected so far.
	4.c	Provided additional enforcement of construction and demolition guidance, with regular checks on medium and high risk building sites.	Y	We will investigate and enforce the requirements relating to dust control on sites subject to receiving nuisance complaints but would require additional staffing resources in matters relating to NRMM .Awaiting training from the GLA regarding NRMM enforcement.
5. Integrating air quality into the public health system	5	Included air quality in the borough's Health and Wellbeing Strategy and/or the Joint Strategic Needs Assessment	Y	Air Quality has been included the Joint Strategic Needs Assessment. The last Health and Wellbeing Strategy expired in 2015. Inclusion the revised Health and Wellbeing Strategy including air quality as a key theme is currently being proposed. The final revised strategy will be determined late 2016.
6. Informing the public	6.a	Raised awareness about air quality locally	Y	airTEXT promotion in schools, elderly care homes, social service drop in centres, in local communitesand on the council website and Twitter feed. AQ community MAQF campaign. The promotion and publicity about our schools AQ Projects in the media and the forthcoming schools AQ and Low Emission Neighbourhood (LEN) Projects have raised considerable awareness about local air quality. We are currently in the process of revising our air quality web page to make it more informative regarding all local air quality issues.

2.1 Air Quality Action Plan Progress

Table K provides a brief summary of Redbridge Council's progress against the Air Quality Action Plan, showing progress made this year. New projects which commenced in 2015 are shown at the bottom of the table.

Table K. Delivery of Air Quality Action Plan Measures

The Council's air quality action plan is in the course of being updated. Therefore a selection of key achievements has been selected from the current actions which included in the revised action plan. A new list of achievements against the new action plan currently under preparation will be provided in the 2016 Annual Status Report.

Measure	Action	Progress	Further information
1	Completion of MAQF School Projects Round 1.	 Modal Shifts achieved. Car usage to and from school reduced in favour of more sustainable transport. Benefits will be reduced emissions around the schools. 	
2	Commencent of MAQF School Projects Round 2. (September 2016-2019) 16 schools in 6 clusters. Work to be delivered for 2 school clusters per year.	 More Modal Shifts to be achieved to reduce car usage around schools in favour of more sustainable transport. Walking routes to be established to reduce 	

		 AQ/Public Health community campaigns to educate the local community regarding the benefits of reduce car usage in favour of more sustainable transport Benefits will be reduced emissions around the schools and in the local community. 	
3	Commencement of the joint Redbridge/Newham Low Emission Neighbourhood (LEN) Project 2016-2019 in Ilford Garden Junction	Vehicle emission reductions in area on the A118 Romford Road through infrastructure improvments that will facillitate increased cycling, walking, greater accessibilty and reduced car usage.	
4	Dealing with emissions from Transport	Fleet services have been evaluated for upgrades to meet ULEZ compliance requirements. Redbridge Transport Team has responded to the Mayor of London's consultation. The council fleet aims to be ULEZ compliant by 2018. The council is currently considering adopting legislation for enforcing against vehicle idling at exposure hotspots (ie outside schools). Smarter driver training is given to all council drivers and all fleet vehicles are fitted with econo-speed governors. Differential parking concessions allow free parking permits for residents in the borough. It is currently being considered to extend this other vehicles to discourage the use of more polluting vehicles. The council is also currently considering local	

	T	·	
		freight consoldation measures to reduce delivery numbers to council buildings. Encouraging more walking and cycling in Redbridge has progessed through the council's cycling team and through	
		MAQF schools projects. This work continues to	
		progess with the aim of facilitating greater modal	
		shifts to sustainable transport.	
5	Dealing with emissions from Bulidings	Lynton House has been refurbished with a range of energy efficiency improvement measures in 2014. The Mayor London RE:FIT programme is currently working in parternership with 6 Redbridge schools installing solar panels for electricity generation. The council and the RE:FIT team are also currently exploring the options to take forward energy efficiency measures in council buildings identified in the Redbridge Environmental Action Plan. New low emission boilers installation are an example of a range of	
		measures currently being considered that will deliver emission reductions.	
6	Raising Awareness	airTEXT promotion is being delivered in schools, elderly care homes, social service drop in centres, in local communites and on the council website and Twitter feed. Awareness has also being raised in the community through the MAQF campaign. The promotion and publicity about our schools AQ Projects in the media and the forthcoming schools AQ and Low Emission Neighbourhood (LEN) Projects have raised	

	considerable awareness about local air quality.	
	We are currently in the process of revising our	
	air quality web page to make it more informative	
	regarding all local air quality issues.	

3. Planning Update and Other New Sources of Emissions

3.1 New or significantly changed industrial or other sources

London Borough of Redbridge confirms that there are no new or significantly changed industrial or other sources identified.

Appendix A Details of Monitoring Site QA/QC

A.1 Automatic Monitoring Sites

Air quality monitoring data provides a measure of actual concentrations and therefore exceedences of air quality objectives. Data also provides information on trends in air pollution and can provide the basis for verifying the various models used to predict future pollution levels.

In 2015 London Borough of Redbridge undertook automatic monitoring at the following two sites:

- **CM7 Redbridge 7** (Ley Street)located northeast of Ilford an urban background site within the Ley Street Depot that is sited on Ley Street. The site monitored nitrogen dioxide, PM10 (by BAM), and ozone. Since 2016 this site began monitoring PM2.5 (by BAM) . Redbridge 7 (Ley Street) was set up in 2014, and is also identified in this report as CM7.
- **CM4 Redbridge 4** (Wanstead) an urban traffic site close to the A12 towards the southwest of the Borough. The site started operating in November 1999. The site monitors nitrogen dioxide, PM10 and PM2.5 (both by BAM). Until March 2012 it also monitored carbon monoxide and sulphur dioxide.

The sites represent relevant exposure within the Borough. The sites are part of the London Air Quality Network and therefore the standards of QA/QC are similar to those of the government's AURN sites. Fortnightly local site operator (LSO) zero/span calibrations of the gas analysers are carried out by the local authority, with subsequent data collection, validation and ratification undertaken by the ERG at King's College London. In all cases the data are fully ratified unless reported otherwise. Details of the sites can be found at www.londonair.org.uk

UKCAS accredited independent site audits are carried out every 6 months by the National Physics Laboratory (NPL). Additional six monthly equipment service visits by Enviro Technology Services Plc.

The Council previously operated three other automatic monitoring stations in the Borough: **Redbridge 2** - a roadside site on Ilford Broadway closed in 2003, **Redbridge 3** – a kerbsite site at Fulwell Cross closed in 2012, and **Redbridge 5** – a roadside site in South Woodford closed in 2012.

PM₁₀ Monitoring Adjustment

The LLAQM.TG16 guidance highlights that Met-One PM₁₀ Unheated BAM 1020 instruments conform to the equivalence criteria relating to the gravimetric European reference method. A correction using a factor of 1.2 is automatically applied to adjust for slope.

A.2 Diffusion Tube Quality Assurance / Quality Control

- Diffusion Tubes are prepared and analysed by UKAS accredited Gradko International Ltd
- Diffusion Tubes are prepared using 50% triethanolamine with acetone method and analysed using UV spectrophotometry
- The lab follows the procedures set out in the Defra Technical Guidance for LAQM TG(09).
- For details attaining to 'results' precision, bias adjustment factors; and reference methods are as follows:

Results of laboratory precision (tube precision and WASP results):

The LAQM website gives the following precision results for Gradko 50% TEA in acetone:

2015 Good (15 studies)

The laboratory performance of Gradko International was tested in April to November 2015 under AIR NO2 PT Rounds AR006, AR007, AR009 and AR010. The performance was 100% in all rounds.

The version of the bias adjustment factor database used is: 04/16

The bias adjustment factor has been applied to the monthly and annual means as follows:

						41.1		- ,	3= /			D.		
				ı	Mc	onthly	means	[μg/m	iš] (no	t bias a	adjuste	ed) □		
Tube	Site													
nos.	ID	Site name	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1,2,3	DT A	Mayfield School	25.3	33.3	24.5	27.6	21.1		21.3	23.8	29.9	28.0	32.7	31.0
4,5,6	DT B	Ilford Lane	51.8	58.4	47.6	54.7	52.1	50.1	56.4	58.7	59.2	49.5	62.1	55.7
7,8,9	DT C	Ilford Lane BP	56.3	60.0	49.8	51.8	48.2	52.2	55.8	53.8	63.4	55.3	63.0	60.7
10,11,12	DT D	Ley Street	38.7	39.8	30.1	29.7	25.9	25.4	24.7	25.2	38.1	35.2	32.1	29.0
13,14,15	DT E	Gardner Close	52.8	55.7	43.6	49.0	39.0	39.0	42.3	42.0	42.8	42.5	36.3	57.4
16,17,18	DT F	Fulwell Cross	54.3	48.2	43.9	40.0	41.2	40.0	47.5	48.7	49.9	49.2	52.9	48.5
19,20,21	DT G	Perth Road	48.7	46.1	40.5	85.2	27.5	60.1	35.9	35.9	73.2	48.4	56.3	35.4
22,23,24	DT H	WestB Eastern Ave	74.4	83.9	68.0	38.9	36.7	36.6	46.0	63.9	60.4	53.8	47.4	60.4
25,26,27	DT I	Central Res	65.7	59.7	50.3	32.2		30.2	68.9	93.6	40.6	51.2	57.7	49.6
28,29,30	DT J	EastB Eastern Ave	54.2	53.8	45.2	59.8	29.9	56.2	80.1	46.6	51.8	39.3	42.6	46.6
31,32,33	DT K	Parham Drive	39.4	37.4	32.2	47.9	51.9	51.8	30.6	33.7	55.5	62.5	65.0	58.4
34,35,36	DT L	NCR Nth Royston Gdns	45.5	52.5	49.9	77.9	36.4	40.2	38.5	39.1	59.0	58.7	46.4	32.7
37,38,39	DT M	NCR Sth Wanstead Park	74.9	85.7	67.2	49.5	75.6	73.3	84.3	87.0	90.4	83.1	81.0	69.9
40,41,42	DT N	Ethal Davis School	36.4	31.9	25.2	26.2	21.8	21.3	23.5	22.2	31.2	27.2	31.5	27.6
43,44,45	DT O	Grove Road		50.9	40.4	48.4	39.7	34.1	46.3	47.7	51.7	47.8	59.9	61.8
46,47,48	DT P	High Road Woodford	41.1	44.8	38.1	36.8	30.0	46.8	32.8	37.8	41.1	40.9	43.0	47.1
49,50,51	DT Q	Chigwell Rd M11	51.1	52.5			43.9	43.9	50.1	48.9	40.2	40.5	57.0	64.6
52,53,54	DT R	Winston Way Primary	54.9	55.8	51.2	54.8	45.2	55.9	53.6	52.8	39.7	60.7	59.4	49.7
55,56,57	DT S	Winston Way Gyratory	57.5	60.6	48.2	56.6	49.5	55.8	53.9	55.5	64.2	64.3	53.6	44.8
58,59,60	DT T	Chadwell Heath Primary	43.7	48.5	42.2	48.2	36.9	40.5	43.6	40.2	50.3	44.3	48.4	43.8
61,62,63	DT U	Goodmayes Primary	43.6	44.3	31.3	37.8	30.3	32.1	33.5	29.7	41.2	35.5	42.9	36.8
64,65,66	DT V	Isaac Newton Academy	41.4	43.8	35.8	33.0	26.4	27.1	28.4	27.5	36.8	36.1		27.2
67,68,69	DT W	Inside Winston Way Prim.	43.2	43.6	33.4	36.6	27.8	29.3	29.6	31.8	60.8	40.1	31.1	31.8

2015		Calc	ulation of per	iod adjust	ed and bias	adjusted a	ınnual mear	ıs		
					Calculation of period adjustment factors				bias factor	0.95
Site ID	Site name	Period mean	Period	Period mean	Ratio Am/Pm	Period mean	Ratio Am/Pm	Period adjustm'nt factor (R _a)	Annual means before bias adj	Bias adjusted annual means
DT A	Mayfield School	27.1	11 months					1.000	27.1	25.8
DT B	Ilford Lane	54.7	Whole year					1.000	54.7	52.0
DT C	Ilford Lane BP	55.9	Whole year					1.000	55.9	53.1
DT D	Ley Street	31.2	Whole year					1.000	31.2	29.6
DTE	Gardner Close	45.2	Whole year					1.000	45.2	42.9
DT F	Fulwell Cross	47.0	Whole year					1.000	47.0	44.7
DT G	Perth Road	49.4	Whole year					1.000	49.4	46.9
DT H	WestB Eastern Ave	55.9	Whole year					1.000	55.9	53.1
DT I	Central Res	54.5	11 months					1.000	54.5	51.8
DT J	EastB Eastern Ave	50.5	Whole year					1.000	50.5	48.0
DT K	Parham Drive	47.2	Whole year					1.000	47.2	44.8
DT L	NCR Nth Royston Gdns	48.1	Whole year					1.000	48.1	45.7
DT M	NCR Sth Wanstead Park	76.8	Whole year					1.000	76.8	73.0
DT N	Ethal Davis School	27.2	Whole year					1.000	27.2	25.8
DT O	Grove Road	48.1	11 months					1.000	48.1	45.7
DT P	High Road Woodford	40.0	Whole year					1.000	40.0	38.0
DT Q	Chigwell Rd M11	49.3	10 months					1.000	49.3	46.8
DT R	Winston Way Primary	52.8	Whole year					1.000	52.8	50.2
DT S	Winston Way Gyratory	55.4	Whole year					1.000	55.4	52.6
DT T	Chadwell Heath Primary	44.2	Whole year					1.000	44.2	42.0
DT U	Goodmayes Primary	36.6	Whole year					1.000	36.6	34.8
DT V	Isaac Newton Academy	33.0	11 months					1.000	33.0	31.4
DT W	Inside Winston Way Prim	36.6	Whole year					1.000	36.6	34.8

Factor from Local Co-location Studies (if available)

The local co-location studies at the Redbridge 7, Ley Street, CMT = DT D and Redbridge 4, Gardner Close, CM4 = DT E gave an averaged local bias factor for 2015 of 0.955

2015	Bias adjustment factor
Background Redbridge local: CM7=DT D	1.04
Roadside Redbridge local: CM4=DT E	0.87
Average local: CM7=DT D and CM4=DT E	0.955
National Default – (15 studies)	0.95

<u>Discussion of Choice of Factor to Use</u>

For each of the two local sites there were 12 months of "Good Precision" data. The diffusion tubes are in similar exposure positions to the sampler inlets of the chemiluminescent analysers at the continuous sites. We have applied the National Default factor of 0.95 in our calculations in preference to the local factor of 0.955 since the former derives from fifteen study sites.

Bias adjustment factors for previous years:

2014: A national bias factor of 0.76 used (Lab: ESG Glasgow)

2013: A local bias factor of 0.80 used (Lab: ESG Glasgow)

A.3 Adjustments to the Ratified Monitoring Data

Short-term to Long-term Data Adjustment

 Table M.
 Short-Term to Long-Term Monitoring Data Adjustment

2015 PM ₁₀ Annualisation calculations											
Nearby long-term, continuous monitoring sites		Annual capture rate	Annual mean Am		Jul-Dec Period mean Pm1	Ratio Am/Pm 1					
B & D - Scrattons Fm	BG2	94	20.6		18.9	1.089					
Bexley - Belvedere West	BQ7	94	17.9		17.4	1.032					
Havering - Rainham	HV1	94	17.9		17.5	1.026					
					Average ratio (R _a 1)	1.049					
Redbridge sites		Annual capture rate	Period capture rate	Annual 99.8 hourly percentile	Jul-Dec Period mean	Period mean x R _a 1	Annual mean estimate				
Perth Terrace	RB1										
Ley Street	RB7										
Gardner Close	RB4	38	75		16.2	17.0					
Annual mean RB4 Estimate:							17.0				

Site	Site Type	Annual Mean (μg/m³)	Period Mean (μg/m³)	Ratio
BG2	Background	20.6	18.9	1.089
BQ7	Background	17.9	17.4	1.032
HV1	Background	17.9	17.5	1.026
			Average	1.049

Appendix B Full Monthly Diffusion Tube Results for 2015

Table N. NO₂ Diffusion Tube Results

Site ID	Valid data capture for monitoring period % ^a	Canture		Annual Mean NO₂ (Bias Adj Factor =0.95)												
			Jan	Feb	March	Apr	May	June	Jul	Aug	Sept	Oct	Nov	Dec	Annual mean – raw data ^c	Annual mean – bias adjusted ^c
DT A	92	92	25.3	33.3	24.5	27.6	21.1		21.3	23.8	29.9	28.0	32.7	31.0	27.1	25.8
DT B	100	100	51.8	58.4	47.6	54.7	52.1	50.1	56.4	58.7	59.2	49.5	62.1	55.7	54.7	52.0
DT C	100	100	56.3	60.0	49.8	51.8	48.2	52.2	55.8	53.8	63.4	55.3	63.0	60.7	55.9	53.1
DT D			38.7	39.8	30.1	29.7	25.9	25.4	24.7	25.2	38.1	35.2	32.1	29.0	31.2	29.6
DT E	100	100	52.8	55.7	43.6	49.0	39.0	39.0	42.3	42.0	42.8	42.5	36.3	57.4	45.2	42.9
DT F	100	100	54.3	48.2	43.9	40.0	41.2	40.0	47.5	48.7	49.9	49.2	52.9	48.5	47.0	44.7
DT G	100	100	48.7	46.1	40.5	85.2	27.5	60.1	35.9	35.9	73.2	48.4	56.3	35.4	49.4	46.9
DT H	100	100	74.4	83.9	68.0	38.9	36.7	36.6	46.0	63.9	60.4	53.8	47.4	60.4	55.9	53.1
DT I	92	92	65.7	59.7	50.3	32.2		30.2	68.9	93.6	40.6	51.2	57.7	49.6	54.5	51.8
DT J	100	100	54.2	53.8	45.2	59.8	29.9	56.2	80.1	46.6	51.8	39.3	42.6	46.6	50.5	48.0
DT K	100	100	39.4	37.4	32.2	47.9	51.9	51.8	30.6	33.7	55.5	62.5	65.0	58.4	47.2	44.8
DT L	100	100	45.5	52.5	49.9	77.9	36.4	40.2	38.5	39.1	59.0	58.7	46.4	32.7	48.1	45.7
DT M	100	100	74.9	85.7	67.2	49.5	75.6	73.3	84.3	87.0	90.4	83.1	81.0	69.9	76.8	73.0
DT N	100	100	36.4	31.9	25.2	26.2	21.8	21.3	23.5	22.2	31.2	27.2	31.5	27.6	27.2	25.8
DT O	92	92		50.9	40.4	48.4	39.7	34.1	46.3	47.7	51.7	47.8	59.9	61.8	48.1	45.7
DT P			41.1	44.8	38.1	36.8	30.0	46.8	32.8	37.8	41.1	40.9	43.0	47.1	40.0	38.0
DT Q	83	83	51.1	52.5			43.9	43.9	50.1	48.9	40.2	40.5	57.0	64.6	49.3	46.8

Site ID	Valid data capture for monitoring period % ^a	capture	Annual Mean NO ₂ (Bias Adj Factor =0.95)													
			Jan	Feb	March	Apr	May	June	Jul	Aug	Sept	Oct	Nov	Dec	Annual mean – raw data ^c	Annual mean – bias adjusted ^c
DT R	100	100	54.9	55.8	51.2	54.8	45.2	55.9	53.6	52.8	39.7	60.7	59.4	49.7	52.8	50.2
DT S	100	100	57.5	60.6	48.2	56.6	49.5	55.8	53.9	55.5	64.2	64.3	53.6	44.8	55.4	52.6
DT T	100	100	43.7	48.5	42.2	48.2	36.9	40.5	43.6	40.2	50.3	44.3	48.4	43.8	44.2	42.0
DT U	100	100	43.6	44.3	31.3	37.8	30.3	32.1	33.5	29.7	41.2	35.5	42.9	36.8	36.6	34.8
DT V	92	92	41.4	43.8	35.8	33.0	26.4	27.1	28.4	27.5	36.8	36.1		27.2	33.0	31.4
DT W	100	100	43.2	43.6	33.4	36.6	27.8	29.3	29.6	31.8	60.8	40.1	31.1	31.8	36.6	34.8

Exceedance of the NO₂ annual mean AQO of 40 μgm⁻³ are shown in **bold**.

^a data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

b data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c Means should be "annualised" in accordance with LLAQM Technical Guidance, if valid data capture is less than 75%

Distance Adjustment

The bias-adjusted NO_2 annual mean diffusion tube concentration exceedances reported at the sites listed in table N (above) have been distance corrected for the nearest location relevant for exposure. These predictions have been done using the NO_2 fall-off with distance calculator available on the LAQM Support website.

The following factors are have been used to predict the annual mean NO2 concentration (in $\mu g/m^3$) at the the receptor/relevant exposure :

- How far from the KERB is the location where the measurement was made (in meters)
- How far from the KERB is the receptor/relevant exposure (in meters)
- The local annual mean background NO2 concentration (in μg/m³)
- The measured annual mean NO2 concentration (in μg/m³)

The measurement and background concentrations must be for the same year. The background concentration could come from the national maps published at (http://laqm.defra.gov.uk/review-and-assessment/tools/background-maps.html) or from a nearby monitor in a background location. 2015 National map background concentrations have been in this report. Use of a measured result from nearby background monitor for background concetration will be denoted by *

Data for the distance of the kerb to the measurement location has been taken from table B in this report.

The calculator follows the proceedure set out in Box 2.3 of LAQM TG(09). The results will have greater uncertainty than measured data. More confidence can be placed in results where the distance between the monitor and the receptor is small than where it is large. Each distance should be greater than 0.1m and less than 50m. The NO_2 fall off with distance correction has only been applied to sites with relevant exposure that exceed the AQ objectives and that also meet the distance requirement.

Table O. NO₂ Distance Corrected Diffusion Tube Results

Site ID	Annual mean – raw data ^c	Annual mean – bias adjusted	Local Annual mean – background	Distance of measurement from kerb of nearest road (m)	Distance of receptor from kerb (m)	Annual mean – distance corrected
DT A	27.1	25.8				
DT B	54.7	52.0	30.6	2.3	2	52.7
DT C	55.9	53.1	25.4	3.0	4.9	49.6
DT D	31.2	29.6				
DT E	45.2	42.9	29	4.2	11.3	39
DT F	47.0	44.7	20.8	1.2	8.7	34.8
DT G	49.4	46.9	26.3	1.5	6.4	40.3
DT H	55.9	53.1	26.3	1.3	4.3	49.3
DT I	54.5	51.8				
DT J	50.5	48.0	26.3	0.9	7.5	38.9
DT K	47.2	44.8	26.3	40	43.9	43.4
DT L	48.1	45.7	33	2.1	26.2	38.1
DT M	76.8	73.0	33	3.0	4.8	68.1
DT N	27.2	25.8				
DT O	48.1	45.7	34.1	8.0	12.8	43.8
DT P	40.0	38.0				
DT Q	49.3	46.8				
DT R	52.8	50.2	26.8	3.2	16.8	40.0
DT S	55.4	52.6				

Site ID	Annual mean – raw data ^c	Annual mean – bias adjusted	Local Annual mean – background	Distance of measurement from kerb of nearest road (m)	Distance of receptor from kerb (m)	Annual mean – distance corrected
DT T	44.2	42.0	21.8	0.6	6.6	33.1
DT U	36.6	34.8				
DT V	33.0	31.4				
DT W	36.6	34.8				